Leveraging Open-Source Language Models for Automatic Codification of Employment and Economic Activity in Household Surveys

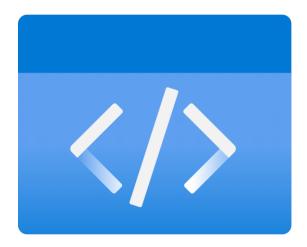
Alejandro Pimentel

12/Dec/2024

Introduction

Enhancing Efficiency in Statistical Processes

Focus: Occupation (SINCO) and Economic Activity (SCIAN) variables



Codification Framework

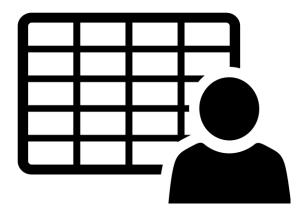
NAICS: North American Industry Classification System

SINCO: National Occupational Classification System

Surveys

ENIGH: National Survey of Household Income and Expenditure

- Quarterly
- 40000 records
- 260 coders
- Decentralized


ENOE: National Survey of Occupation and Employment

- Biennial
- 30000 records
- 10 coders
- Centralized

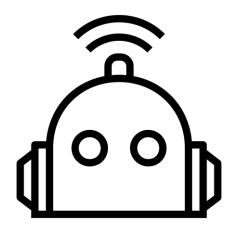
EIC: Intercensal Survey

- Quinquennial
- More than 1 million records
- 600 coders
- Centralized

The Challenge

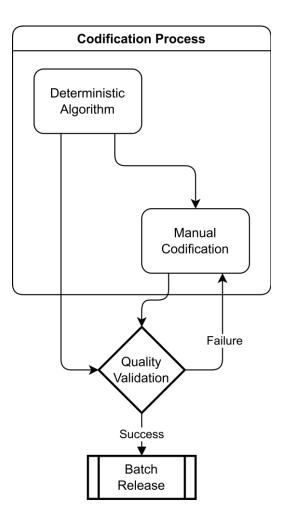
Manual Coding Limitations Labor-intensive and time-consuming

Requires extensive training and resources


Prone to human error

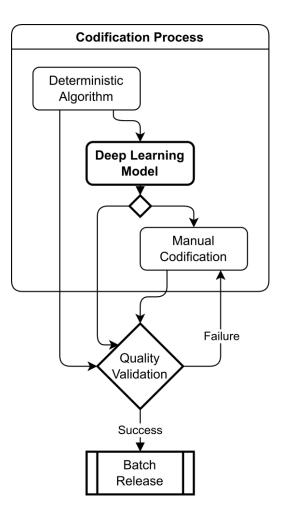
The Solution

Using AI to Automate Coding Tasks Implementation of AI algorithms Reduction in manual workload Improvement in accuracy and consistency

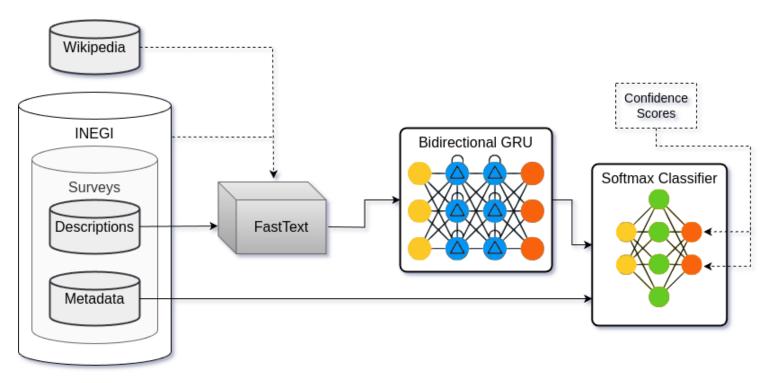


Original Methodology

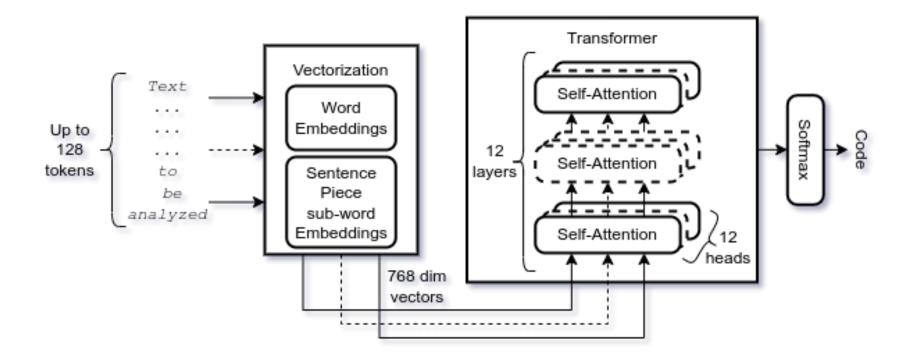
Process Development and Evaluation Phases:


- Deterministic algorithms
 Manual Coding
- 3. Quality validation

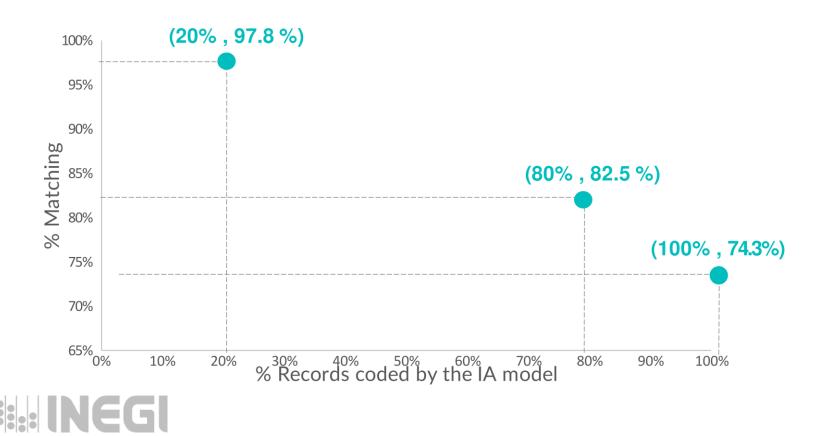
Methodology


Process Development and Evaluation Phases:

- 1. Deterministic algorithms
- 2. Artificial Intelligence model
- 3. Manual Coding
- 4. Quality validation



ENIGH Survey



ENOE Survey

Threshold Trade-off

ENIGH Threshold Analysis - Occupation

Threshold	Val Savings	Val Matching	Matching	Quality	Savings	h	p-value
0.472565	90.0%	70.7%	73.2%	71.4%	89.3%	0	1
0.586216	80.0%	74.5%	77.4%	75.2%	79.5%	0	0.9752
0.705673	70.0%	78.4%	81.4%	79.3%	69.4%	0	0.0810
0.808395	60.0%	81.9%	85.6%	83.2%	59.0%	1	6.0133e-04
0.889082	50%	85.4%	89.4%	86.5%	48.2%	1	6.8188e-05
0.943088	40.0%	88.5%	92.6%	89.3%	37.9%	1	7.6920e-05
0.973509	30.0%	91.4%	95.3%	91.8%	28.0%	1	0.0023
0.989804	20.0%	94.6%	97.5%	93.7%	19.0%	0	0.0662
0.997738	10.0%	96.8%	98.9%	95.6%	9.2%	0	0.5000

ENIGH Threshold Analysis - Activity

Threshold	Val Savings	Val Matching	Matching	Quality	Savings	h	p-value
0.534222	90.00%	76.70%	77.1%	76.8%	89.7%	0	0.9850
0.677070	80.00%	80.40%	81.1%	80.4%	79.6%	0	0.6535
0.793442	70.00%	83.90%	84.9%	83.9%	70.1%	0	0.0797
0.881765	60.00%	87.00%	88.8%	87.2%	60.2%	1	0.0054
0.936173	50%	89.7%	92%	89.9%	50.5%	1	0.0034
0.970834	40.00%	92.50%	95.1%	92.7%	40.4%	1	0.0173
0.988363	30.00%	94.80%	97.7%	95.0%	28.9%	0	0.1279
0.996108	20.00%	96.90%	98.9%	96.5%	18.1%	0	0.1334
0.999112	10.00%	97.90%	99.8%	97.8%	8.3%	0	0.2500

ENOE - ENIGH Comparison

Application on full data.

	Activity	Occupation
ENIGH	76.7	70.7
ENOE	84.8	77.4

ENOE - ENIGH Comparison

Application on half the data.

	Activity	Occupation
ENIGH	89.7	85.4
ENOE	98.4	94.3

Final Remarks

- Significant improvements in coding accuracy and efficiency using advanced models like BERT and FastText.
- Our models have reached or exceeded the quality levels of manual coding, with notable improvements in the ENOE survey.
- Fine-tuning thresholds has shown promising results in balancing quality and savings.
- The success of the models is strongly linked to the quality and curation of the training data.

Next Steps

- Advancing with LLMs
- Creation of a comprehensive ground truth database

18

THANKS

Conociendo México

800 111 46 34 www.inegi.org.mx atencion.usuarios@inegi.org.mx

f 🖸 🗹 🖸 INEGI Informa